
GymNESium: Deep Reinforcement Learning for the NES

GymNESium: Deep Reinforcement Learning for the NES

Hal Kolb hal@kolb.co.uk
Department of Computer Science
Manchester Metropolitan University
Manchester, England, UK

Abstract
This paper presents GymNESium, a Gymnasium environment for modelling Nintendo En-
tertainment System (NES) games, demonstrated by training a bleeding-edge reinforcement
learning (RL) agent to high level play in Mike Tyson’s Punch Out!! (MTPO). The full
spectrum of modern reinforcement learning (RL) optimisations, as outlined in Rainbow
Deep-Q Networks (Hessel et al., 2018) and Beyond the Rainbow (Clark et al., 2024), are
applied to MTPO, showing human-level performance with minimal walltime, on desktop
PC hardware. The full code for the environments and agent is split between 3 GitHub
repositories: GymNESium1 the generic NES environment, Boxing Gym2 the MTPO spe-
cific environment, and mtpo_rainbow_rl3 the RL agent and runnable program.

Figure 1: Total reward for each episode plotted against the number of total
environment steps.

1. https://github.com/Hal609/GymNESium
2. https://github.com/Hal609/BoxingGym
3. https://github.com/Hal609/mtpo_rainbow_rl

1

https://github.com/Hal609/GymNESium
https://github.com/Hal609/BoxingGym
https://github.com/Hal609/mtpo_rainbow_rl
https://github.com/Hal609/GymNESium
https://github.com/Hal609/BoxingGym
https://github.com/Hal609/mtpo_rainbow_rl

Hal Kolb

1 Introduction

Deep reinforcement learning is a powerful machine learning technique capable of training
extremely high level performance models, without the need for large data sets. RL agents
optimise complex and uncertain environments through repeated interactions, evaluated with
a reward function. As modern networks are becoming larger and larger and demonstrating
that performance can continue to rise as they scale, the availability of high quality data is
an increasingly limiting factor. The below figure from Villalobos et al. (2022) illustrates the
scale of data required for modern models, predicting that by 2028 LLMs will be using 100%
of available text data.

Will we run out of data? Limits of LLM scaling based on human-generated data

Pablo Villalobos 1 Anson Ho 1 Jaime Sevilla 1 2 Tamay Besiroglu 1 3 Lennart Heim 1 4 Marius Hobbhahn 1 5

Abstract
We investigate the potential constraints on LLM
scaling posed by the availability of public human-
generated text data. We forecast the growing de-
mand for training data based on current trends and
estimate the total stock of public human text data.
Our findings indicate that if current LLM devel-
opment trends continue, models will be trained
on datasets roughly equal in size to the available
stock of public human text data between 2026 and
2032, or slightly earlier if models are overtrained.
We explore how progress in language modeling
can continue when human-generated text datasets
cannot be scaled any further. We argue that syn-
thetic data generation, transfer learning from data-
rich domains, and data efficiency improvements
might support further progress.

1. Introduction
Recent progress in language modeling has relied heavily on
unsupervised training on vast amounts of human-generated
text, primarily sourced from the web or curated corpora
(Zhao et al., 2023). The largest datasets of human-generated
public text data, such as RefinedWeb, C4, and RedPajama,
contain tens of trillions of words collected from billions of
web pages (Penedo et al., 2023; Together.ai, 2023).

The demand for public human text data is likely to continue
growing. In order to scale the size of models and training
runs efficiently, large language models (LLMs) are typically
trained according to neural scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022). These relationships imply that in-
creasing the size of training datasets is crucial for efficiently
improving the performance of LLMs.

1Epoch 2University of Aberdeen 3MIT CSAIL 4Centre for the
Governance of AI 5University of Tübingen. Correspondence to:
Pablo Villalobos <pablo@epochai.org>.

Preprint.

2020 2022 2024 2026 2028 2030 2032 2034

Year

1011

1012

1013

1014

1015

E
�
ec

ti
ve

st
o
ck

(n
u
m

b
er

of
to

ke
n
s)

GPT-3

PaLM

Falcon-180B
FLAN

Llama 3

DBRX Stock of data

Median date of
full stock utilization

Dataset size projection

Median date of
full stock utilization
(5x overtraining)

Figure 1. Projections of the effective stock of human-generated
public text and dataset sizes used to train notable LLMs. The
intersection of the stock and dataset size projection lines indi-
cates the median year (2028) in which the stock is expected to
be fully utilized if current LLM development trends continue. At
this point, models will be trained on dataset sizes approaching
the total effective stock of text in the indexed web: around 4e14
tokens, corresponding to training compute of →5e28 FLOP for
non-overtrained models. Individual dots represent dataset sizes of
specific notable models. The model is explained in Section 2

In this paper, we argue that human-generated public text
data cannot sustain scaling beyond this decade. To support
this conclusion, we develop a model of the growing demand
for training data and the production of public human text
data. We use this model to predict when the trajectory of
LLM development will fully exhaust the available stock of
public human text data. We then explore a range of potential
strategies to circumvent this constraint, such as synthetic
data generation, transfer learning from data-rich domains,
and the use of non-public data.1

1.1. Related work

Stock of internet data Several studies have sought to quan-
tify the internet’s size and information content. Murray H. &
Moore (2000) estimated the internet’s size at approximately
2.1 billion unique web pages containing 21 terabytes of data.
Coffman & Odlyzko (1998) and Odlyzko (2016) found that
public internet traffic experienced a rapid growth rate of

1The code used in our analysis can be found at
https://epochai.org/code/data-stock.

1

ar
X

iv
:2

21
1.

04
32

5v
2

 [c
s.L

G
]

4
Ju

n
20

24

Figure 2: Projection of the amount of text data available to train LLM’s
from Villalobos et al. (2022)

.

RL agents are able to optimise by taking actions in an environment and receiving a set
of rewards and punishments based on these decisions. This mimics how humans achieve
high-level performance in novel and unfamiliar domains through evaluation and feedback.
Achieving this level of generalised aptitude in a machine learning model is still a distant
goal, but research continues to push the boundary of network generalisability. For example,
in 2020, MuZero advanced the state of the art by achieving superhuman performance on “a
range of challenging and visually complex domains, without any knowledge of their under-
lying dynamics”(Schrittwieser et al., 2020). The lack of reliance on preexisting knowledge
of a domain’s underlying dynamics is of particular interest, as it allows the agent to develop
novel strategies not yet known to human players. Furthermore, supervised learning models
such as LLMs aim to predict tokens (with the addition of self-supervision) based on avail-
able data. As the available training data is human-made, and thus limited to human ability,

2

GymNESium: Deep Reinforcement Learning for the NES

it can become challenging to push models to exceed human performance. For RL models
however, no such limitation exists as the models require no human examples to draw from.
For instance, Shinn et al. (2024) surpassed GPT-4 on the HumanEval coding benchmark by
using reinforcement feedback to improve the model’s output.

One of the main ways MuZero was evaluated was by playing Atari games. Notably,
Atari 2600 games are possibly the most popular benchmark for RL models, having been
used to evaluate not just MuZero but also some of the most influential and widely cited
RL advancements, such as: “PPO Algorithms" (Schaul, 2015), “Asynchronous Methods
for Deep Reinforcement Learning" (Mnih, 2016), “Prioritised Experience Replay" (Schaul,
2015), “Human-level control through deep reinforcement learning" (Mnih et al., 2015) and
“Deep Reinforcement Learning with Double Q-Learning" (Van Hasselt et al., 2016). This
has been facilitated by the development of the Arcade Learning Environment (ALE) which
uses Gymnasium and the Atari 2600 emulator Stella to provide a set of game environments
for evaluating and training RL models (Bellemare et al., 2013).

The value of ALE as a benchmarking tool stems from serval factors, as outlined in the
2013 paper. First is variety. With over 500 games, spanning multiple genres, the platform
has an expansive and diverse range of environments to be tested and trained on. While the
environments are varied, they are restricted in scope by the limitations of the hardware,
creating a more manageable evaluation domain. Secondly, the games have been created by
independent parties which removes the potential for experimental bias. The last benefit
they identify is that each domain is “interesting enough to be representative of settings that
might be faced in practice".

Figure 3: A selection of popular Atari 2600 games. From left to right:
Breakout, Donkey Kong and Pac-Man.

Given the utility and prevalence of video game based environments it is worth noting
that the 1977 Atari 2600 is an extremely underpowered console compared to what RL agents
are currently capable of. For instance, Firoiu et al. (2017) created “Philip" (and its successor
“Phillip II" (Firoiu et al., 2020)), a model capable of beating the worlds best players at the
highly competitive Super Smash Bros. Melee, a fully 3D GameCube game from 2001. Other
works such as “OpenAI Five" have achieved superhuman performance at modern competitive
games like Dota 2 (Berner et al., 2019). While these are less general agents, it demonstrates
the capability and interest in tackling more advanced games.

3

Hal Kolb

To bridge this gap I present GymNESium, a Gymnasium environment for training and
evaluating models on Nintendo Entertainment System (NES)4 games. While the full scope
of the project aims to implement many NES titles, this initial release focuses on testing
the environment with bleeding edge RL architecture applied to a single title: “Mike Tyson’s
Punch Out!!" (MTPO)5. I then demonstrate how modern RL optimisations enable human-
level gameplay by training on desktop hardware, even with limited walltime.

4. The console was originally released under the name “Famicom" in Japan however, I will refer to it as the
“NES" exclusively.

5. In 1990/91 after the contract to use Tyson’s name and likeness expired, the game was rebranded to
“Punch Out!!". I use the terms Mike Tyson’s Punch Out!!, MTPO and Punch Out interchangeably
throughout.

4

GymNESium: Deep Reinforcement Learning for the NES

2 NES vs Atari

The Atari 2600, released in 1977, has a 1.19Mhz CPU, 128 bytes of RAM and outputs a
192x160 image with a 128-colour palette. The full catalog of officially licensed and released
games consists of 470 titles, with most ROMs being ∼4KB (although 1990s “Fatal Run"
managed to reach 32KB). The iconic CX40 controller has only 18 possible inputs. 4 cardinal
joystick directions, 4 corner directions (e.g. up+left) as well as the, impossible to reach but
still technically valid, inputs of up+down and left+right, and finally the red button next to
the stick.

Comparatively, the NES has a 1.66 MHz, 2 KB of general purpose RAM plus 2 KB of
video RAM and outputs a 256x240 image with 256 unique colours. The NES sports 1376
officially licensed games which vary greatly in ROM size, from Balloon Fight and Super Mario
Bros. at 25 and 41KB respectively, to Mega Man 4 and Earthbound at 524KB. Finally, the
controller has 8 buttons and no limitations on what can be pressed simultaneously (although
you may have to bend some plastic to press left and right at the same time) giving 256
possible combinations.

Figure 4: A selection of popular NES games. From left to right: Metroid,
Super Mario Bros. 3 and Micro Mages.

The technical differences are summarised in the table below:

Atari NES
Release Year 1977 1983
CPU Clock 1.19MHz 1.66MHz
RAM Capacity 128 Bytes 2000KB+2000KB
Resolution 192x160 256x240
Colour Depth 128 256
Catalogue Size 470 1376
Game Size 4KB 25 to 524KB
Action Space 18 256

Figure 5: Atari 2600 and NES hardware comparison.

While this represents a meaningful step up in complexity it is not so significant that
it infeasible to anticipate modern RL agents achieving some level of generality. In support

5

Hal Kolb

of this, I demonstrate how a moderately powered consumer desktop can train agents to
high-level performance in Mike Tyson’s Punch Out!! in around 48 hours.

3 Mike Tyson’s Punch Out!!

Mike Tyson’s Punch Out!! (MTPO) is a 1987 NES title where you play as protagonist
“Little Mac" as he attempts to climb from the minor leagues of boxing up to beating Mike
Tyson himself. The game consists of 14 unique fights against 10 unique opponents, divided
into three circuits:

MTOP Circuits and Opponents

Minor Circuit:
• Glass Joe
• Von Kaiser
• Piston Honda (1)

Major Circuit:
• Don Flamenco (1)
• King Hippo
• Great Tiger
• Bald Bull (1)

World Circuit:
• Piston Honda (2)
• Soda Popinski
• Bald Bull (2)
• Don Flamenco (2)
• Mr. Sandman
• Super Macho Man

The Dream Fight:
• Mike Tyson

Figure 6: Screenshot from MTPO of
the fight against “Super Macho Man".

4 Creating the Environment

4.1 Mathematical Formulation

To facilitate training a diverse set of RL agents, the environment is formulated as a Markov
Decision Process (MDP) defined by the tuple (St, xt, S

M , r), where S is the state, X is the
set of decisions/actions, SM (St, xt) is the transition function, and R(St, xt) is the reward
function. The agent’s objective is to learn a policy Xπ(St)) that maximises the expected
sum of discounted rewards E[

∑∞
t=0 γ

t(St, xt)], where γ ∈ [0, 1) is the discount rate.

6

GymNESium: Deep Reinforcement Learning for the NES

4.1.1 Game State

The state variable at time t (labeled St) encapsulates all the information about the current
game position available to the model. Many RL techniques make use of RAM values to define
the state. For example, Tom Murphy VII’s generalised lexicographic ordering technique uses
the entirety of the NES’s general purpose RAM as it is only 2048 bytes (Murphy VII, 2013).
A more sophisticated approach to defining the state with RAM values is used by Firoiu et al.
(2017), where addresses which store important data, such as character positions or action
states, are identified and read to form the state. Some of Punch Out’s key memory values
are shown in figure 7 below.

Label Address Symbol
Fight ID 0x0008 f
Opponent ID 0x0001 o
Opponent Type ID 0x0002 t
Current Round 0x0006 r
Clock (3 bytes) 0x0305 s
Mac’s Health 0x0391 hM
Opponent’s Current Health 0x0399 hO
Star Punches 0x0342 sp
Energy Level 0x0392 e
Hearts (two bytes) 0x0323 h10
RNG (updates once per frame) 0x0018 rng
Counter (0 to 255) 0x001E c
Opp Fight Pattern Init 0x0030 pinit
Opp Fight Pattern Timer 0x0039 pt
Opp Actions ID 0x003A aO
Global Variable for Enemy Actions 0x003B aglobal

Figure 7: Notable RAM values in MTPO.

Thus the state variable could be written as a vector of these 8-bit values:

St =
[
f, o, t, r, s, hM , hO, sp, e, h10, rng, c, pinit, pt, aO, aglobal

]
(1)

While this approach is effective in reducing the input space, it suffers from two mayor
weaknesses. First is a lack of generality; locating and specifying the particular addresses for
a given game is a lengthy and often tedious task which involves a human identifying which
data are deemed important. This can be mitigated by supplying the entire contents of RAM
however, this then eliminates the benefit of reducing the state space. The other limitation is
that while the contents of RAM are heavily correlated with the game environment, they are
not identical. There is information encoded in a game’s sprites and palettes which cannot be
viewed in RAM, such as an enemy telegraphing an attack. Furthermore, other information
which is present in RAM is intentionally hidden from a player and not displayed on screen,
such as the state of the games random number variable. A more general approach which

7

Hal Kolb

better matches the human play experience, is to take each full frame of video output as a
matrix with dimensions:

number of colour channels (c)× horizontal resolution (sizeh)× vertical resolution (sizev)

Giving a state variable: St = F. Here, F ∈ Rc×sizeh×sizev is the full frame tensor returned
at each step of the emulator. However, the full resolution, unprocessed, frame tensor is
usually not required to achieve optimal performance. Thus, for the Punch Out environment
several filters are applied. First, the image is grayscaled using OpenCV’s cvtColor function.
Next the observation is cropped. Cropping is useful because the key information required to
play Punch Out is contained in the small region of the screen showing the opponent and the
player. Opponents rarely leave this region, and when they do it is for very specific attacks
which can be recognised from the opponent’s absence. I also implemented downscaling for
the observation, but ultimately chose not to utilise it in favour of the aggressive crop.

256x240x3 256x240 84x84

84x84

Figure 8: Visual illustration of how the observation is transformed.

Finally, 4 of these 84x84 processed frame tensors are stacked together using Gymasium’s
FrameStackObservation wrapper, to form a single observation. This allows the network
to learn temporal relationships between frames and track important information such as
moving objects. This gives a final state of:

St = O (2)

Where O ∈ R4×84×84 is the processed observation.

8

GymNESium: Deep Reinforcement Learning for the NES

4.1.2 Decision

The NES controller has 8 buttons, giving a total possible decision space of 256 unique
inputs. However, the vast majority of these combinations do not produce unique action in
most games. The decision space can be greatly reduced by instead mapping unique in-game
actions to button combinations. For instance, in MTPO, the high-level actions available on
each frame are:

In-Game Action Button Controller Value
0 No action - 000000002
1 Right punch A 100000002
2 Left punch B 010000002
3 Right uppercut Up + B 100010002
4 Left uppercut Up + A 010010002
5 Dodge left D-Pad Left 000000102
6 Dodge right D-Pad Right 000000012
7 Block D-Pad Down 100001002
8 Star punch Start 000100002

Figure 9: Possible actions/decision in MTPO.

This constrains the decision space to:

X =
{
0, 1, 2 . . . 8

}
(3)

I further reduce the number of actions with symmetry; right punch, right uppercut and
right dodge are removed from the input space as they do not meaningfully differ from the
left handed equivalents. This leaves only 6 actions for the agent to select from. At each step
the agent selects a decision xt following the requirement:

xt ∈ X , where X ∈
{
0, 1, 2, 3, 4, 5

}
(4)

Indexes 0 to 5 then map to the following controller values which are passed to the emulator:{
0 : 000000002, 1 : 010000002, 2 : 010010002, 3 : 000000102, 4 : 000001002, 5 : 000100002

}
4.2 Exogenous Information

The primary source of uncertainty in the model comes from the randomised actions of the
in-game opponents. The most extensive source of information on MTPO’s random number
generation (RNG) function comes from the speedrunning community. In the interest of
developing consistent strategies for tackling one of the game’s most random opponents:
‘King Hippo", users “Lucandor158" and “Zoxsox" conducted a thorough investigation into
how the game determines random actions (Lucandor158 and Zoxsox, 2019). Based on this
investigation they were able to develop a 100% consistent strategy for manipulating King
Hippo, aptly named the “Hippo Manipo". MTPO selects the opponent’s action based on an
8-bit random value at address 0x0018 which is updated every frame based on the bytes at
0x0019 and 0x001E.6

6. The relevant 6502 disassembly of the RNG function is available in appendix A.

9

Hal Kolb

The data at 0x001E stores an 8-bit frame counter, which is incremented each frame and
loops back to 0 once the value exceeds 255. When updating RNG, the frame counter is loaded
and the bits are shuffled to reduce the frame-to-frame consistency and predictability of the
RNG. Next, the byte at 0x0019, which stores the current controller values (as shown in figure
14) is loaded and shuffled. Given that the RL agent will make occasional random decisions,
using an epsilon-greedy approach, the RNG values will diverge as soon as any random input
is made. From there even identical inputs will result in wildly differing opponent action.
This means that the agent will be unable to predict the actions the opponent will take and
will have to learn to adapt and respond to the uncertainty. Additionally, while the RNG
value will rapidly diverge, I also set the RNG byte at 0x0018 to a random initial value each
time the environment is reset to avoid early predictability.

4.2.1 Policy

The agent is trained using Q-learning, where a numerical “Q-value" is assigned to state-
action pairs. When the network trains, it learns to approximate this Q function by sampling
from its prior experiences, computing the gradient of the difference between prediction and
reality, and then using backpropagation to update all parameters in the network. Once a
the network has been fully trained, the policy simply picks the action xt which maximises
the expected reward, i.e. the action with the highest Q value for the current state St. This
gives the policy:

Xπ(St) = argmax
xt∈Xt

Q(St, xt) (5)

Where Q is the function approximated by the network. However, during training, two
concurrent networks exist, one target network Qtarget and one live network Qlive. The live
network is updated at every gradient step and is used for selecting actions, while the target
network is used to predict future rewards and is periodically updated to match the live
network. Using a separate networks for estimating future rewards gives the live network
a more stable target to aim for and improves the stability of training (Mnih et al., 2015).
Furthermore, during training, the decision (or action) is chosen using an epsilon-greedy
policy given by:

Xπ(St) =

random action, with probability ϵ

argmax
xt∈Xt

Qlive(St, xt), with probability 1− ϵ (6)

Where ϵ ∈ [0, 1]. Taking intermittent random actions ensures that the network balances
between exploration and exploitation and ϵ is deceased throughout training to adjust this
balance.

4.2.2 Reward Function

The contribution or reward function R determines the value of a particular decision in a
state. For the Boxing Gym environment, the following information is used to define the
reward:

10

GymNESium: Deep Reinforcement Learning for the NES

∆Oid = The change in the opponent ID value. Each fight has a unique
ID ranging from 0-13.

∆D = The change in the number of times the opponent has been
knocked down.

∆c = The change in the number of seconds on the clock

∆Hopp = The change in the opponent’s health.

∆Hmac = The change in the player (Mac)’s health.

These are used to create the reward function:

R(St, xt) = 15∆Oid + 2∆D +∆Hopp − 0.1∆c−∆Hmac (7)

4.2.3 Objective Function

The Q function follows the Bellman equation and thus the network should learn to approx-
imate:

Qlive(St, xt) = R(St, xt) + γmax
xt+1

Qtarget(St+1, xt+1) (8)

Where γ ∈ [0, 1) is the discount factor. The discount factor reduces the value of predicted
future rewards to ensure the policy favours imitate rewards (which are certain) over similarly
sized future rewards. If γ is too high the agent may take poor actions, believing that they
will give future rewards which never materialise, whereas if γ is too low, the agent will
become short sighted and fail to learn actions that have better long-term value.

Therefore, the objective function aims to maximise the expected sum of discounted future
rewards, giving:

max
π

E

[∞∑
t=0

R(St, xt) + γmax
xt+1

Qtarget(St+1, xt+1

]
(9)

11

Hal Kolb

5 Code

Existing work has been completed to model the NES as a reinforcement learning problem.
Kauten et al. (2018) developed nes-py ; a Python-based NES emulator and Gym interface,
with the addition of a Gym environment for Super Mario Bros.(Kauten et al., 2017). Un-
fortunately, this work has some significant drawbacks upon which GymNESium improves.
First, nes-py has not seen any major updates in several years and is only compatible with, the
now deprecated, Gym. More critically however, the emulator backend (SimpleNES) only
supports a subset of cartridge configurations (referred to as mappers) resulting in many
games (MTPO included) being unable to run at all. Given this limitation, I instead chose
to create a Gymnasium environment built upon the cynes emulator (Combey, 2024). The
Gymnasium interface, GymNESium, implements a NESEnv class as a child of the Gymna-
sium environment class.

5.0.1 GymNESium

GymNESium is a fairly bare-bones abstraction layer which performs some checks on a ROM,
loads the emulator and implements a NESEnv class. NESEnv provides some general-purpose
methods such as those for saving and loading states and resetting the environment, as well as
some abstract methods to be implemented for each specific game environment. This allows
Gymnasium environments for any game to be set up quickly by inheriting from this class
and implementing the abstract functions which then allows for straightforward training.

5.0.2 Boxing Gym

The MTPO environment (PunchOutEnv) in turn inherits from the NESEnv and contains
the specifics for the Punch Out interface. The full code for this environment is available here:
Boxing Gym. Critically, my initial attempts to train a RL agent suffered from significant
limitations in the speed of execution. Based on the data gathered in these attempts, even
with a highly optimised network architecture, tens of millions of frames of training are
required to produce high level play. This is a particular challenge as emulation speed can
easily be bottlenecked by single-threaded performance, even while overall CPU utilisation
remains low. To ensure efficient use of resources, Boxing Gym leverages vectorisation to
allow multiple parallel environments to be executed to train a single model.

5.1 Transition Function

In a Gymnasium environment the transition function is implemented by overriding the
abstract “step" method from the gym.Env class. The transition function SM takes the
current state St, a given action xt, and the exogenous information Wt+1 and returns the
new state. Generating randomness and transitioning the state is primarily handled by the
emulator therefore Boxing Gym’s step function advances the emulator a single frame with
the chosen action xt and returns the next frame as the observation.

The transition function also checks if a state is terminal and resets the environment
if so. A state is considered terminal if the player (Mac) took any damage/got punched.
This discourages the agent from taking actions which may result in getting hit, as at that
point it is no longer able to gain any additional reward from continuing to play. The

12

https://github.com/Hal609/GymNESium
https://github.com/Hal609/BoxingGym

GymNESium: Deep Reinforcement Learning for the NES

small time penalty was included to discourage inaction or excessive dodging/blocking. The
time penalty was deliberately set low so that continued play would almost always result
in increasing rewards, as otherwise the agent will be incentivised to end the timer early
by getting hit and resetting the environment. This proved effective and the agent quickly
learned to land punches and dodge swings. However, one limitation of this approach is
that more hits and more knockdowns can be gained by dragging out the fight for longer.
This resulted in the agent prioritising technical knockouts (TKOs) where the player wins be
default after 3 knockdowns. There are faster strategies, which involve well timed punches,
that can get a KO much soon however, the agent deliberately avoided these in favour of
the larger reward earned from a TKO. To tackle this, a second training run was performed
where the reward function was updated to much more heavily penalise time, thus making
a fast ending to the fight preferable. To avoid the possibility of the agent attempting to
deliberately get hit to avoid a time penalty, the environment was updated to only reset at
the end of a round. That way the only strategy to reduce the time penalty was to KO the
opponent sooner.

5.2 Network Architecture

To test the environment the agent is implemented by directly utilising the Beyond The
Rainbow network architecture from Clark et al. (2024), which combines each of the following
innovations: Prioritised Experience Replay, N-Step, Distributional RL, Dueling DQN, Dou-
ble DQN (Van Hasselt et al., 2016), Impala Architecture + Adaptive Maxpooling, Spectral
Normalisation (SN), Implicit Quantile, Networks (IQN), Munchausen RL and Vectorisation.
The network consists of several convolution blocks, each followed by a rectified linear unit
(ReLU) activation layer. The diagrams below were created to illustrate the layers of the
network.

test

16xModelSize

84
x8
4

Convolution Block1

32xModelSize

42
x4
2

Convolution Block2

32xModelSize

21
x2
1

Convolution Block3

6x
6

Adaptive
Pooling

Cosine

Fl
at
te
ne
d

Cosine Em-
bedding

512

1

Value Stream

512 A
ct
io
ns

Advantage Stream

+

Tau x Actions

B
at
ch
Si
ze

Quantile Outputs

Figure 10: High level visualisation of the network layers.

Figure 10 above shows how the main blocks of the network fit together, as well as how
duelling DQN(Wang et al., 2016) is used by splitting the network into an advantage and a

13

Hal Kolb

value stream. Each one of the convolution blocks contain several convolution layers, each
made up of 32 channels. The below figure shows the steps involved in convolution block 1.

Convolution Block1

3x3 kernels, stride 2

42
x4
2x
32

32 Channel Convolution

Residual Block 1

3x3 kernels, stride 1

42
x4
2x
32

32 Channel Convolution

3x3 kernels, stride 1

42
x4
2x
32

32 Channel Convolution

+

Residual Block 2

3x3 kernels, stride 1

42
x4
2x
32

32 Channel Convolution

3x3 kernels, stride 1

42
x4
2x
32

32 Channel Convolution

+

Figure 11: Visualisation of convolution block 1.

Note that the first 32 channel convolution has a stride of 2, which reduces the dimensions
of the observation from 84x84 to 42x42 while the 32 channels change the dimensions to
42x42x32. The darker orange band after each convolution indicates a ReLU activation layer
which sets any negative values in the convolution kennels to 0. The green plusses show
where “shortcut" layers are used, which combine the output of the first convolution layer
back into the outputs of each residual block.

6 Training

The network was trained on a desktop running an AMD Ryzen 5 5500, RTX 2080 Super
and 32GB of RAM for 48 hours, running 64 parallel environments. The hyperparamters
used during training are listed in appendix B. The training lasted for 13,743,232 steps over
7800 episodes

14

GymNESium: Deep Reinforcement Learning for the NES

7 Evaluation

Figure 12: Total reward for each episode plotted against the number of total
environment steps. The orange line shows a power law fit with a log-space
R-squared value of 0.762 and the blue line shows a running average of the

previous 100 rewards.

Each data point in figure 13 represents one complete episode, i.e. a full play through from
the start of the first fight, up to when agent got hit, and the environment reset. The total
steps on the x-axis show how many gradient steps had been taken up to that point in
training. Over the course of the training the agent achieved single-episode reward of 528.5
on episode 7177 with the last 100 episodes having a mean reward of 399.5. The strength of
the BTR architecture is evident in how consistently and rapidly the reward increases as the
network is optimised. Given the trend at the time training finished, it is hard to assess if the
agent would have continued to advance if given more time. A comparison worth mentioning
however, is that the BTR authors showed increasing performance up to 200 million steps
(compared to the 13 million used here) which suggests the rewards would have continued to
rise.

Notably, the graph also shows stratification, with distinct horizontal lines of consistent
reward. Running samples of the network at these points showed that these lines match up
with when the agents reaches a new, unfamiliar, and more challenging opponent and quickly
gets hit. These sharp difficulty spikes end many episodes, causing them to end with a similar
reward. The below graph shows the reward achieved by an agent reaching, and then losing
to, each opponent.

15

Hal Kolb

Von Kaiser

Piston Honda

Don Flamenco

King Hippo

Great Tiger

Figure 13: Total episode reward plotted against the number of total
environment steps with lines to show approximately where the reward limit is

if the agent is not able to beat a particular opponent.

The large number of episodes which terminate at “Great Tiger" cause the largest barrier
however, a few episodes find success in progressing the fight.

As noted, this reward structure incentivises drawn out fights won by TKO. To encourage
the agent to play more aggressively and finish fights sooner a second agent was trained with
a new set of rewards. Given the change in rewards this second model cannot be directly
compared with the first however, the second training process terminated early due to a
hardware fault and was unable to beat “King Hippo". Despite this, the agent was able to
constantly beat the first 4 opponents much more quickly than the first, and as such the
model is included in the release for comparison.

8 Conclusion

The idea of an NES-based RL evolution environment shows promise with even low-compute,
low-walltime training producing high-level results. Given this potential, further work is
required to implement a more diverse set of game domains and a more produce a more
thorough set of evaluations. Compared to the Atari lineup, the NES features many games
with broader scope and a less clear definition of success than a simple score. While these
present challenges they are also more representative of many real-world problems and so
present an interesting benchmark for future models. With a larger set of game environments
the generality of BTR, as well as other network architectures could be measured, with
comparison between performance in ALE and GymNESium being of particular interest. As
well broadening the set of domains, longer duration training would allow the full capability
of BTR to be explored, as, while Great Tiger was ending many runs, the mean reward had

16

GymNESium: Deep Reinforcement Learning for the NES

not yet plateaued. Developing a single agent capable of beating all 14 fights was an early
goal which may require an increase to the scale of the network however, further testing is
required.

Appendix A. RNG Disassembly

Address Hex Disassembly Comment

1 85E9 A5 1E LDA $1E ; Load frame counter
2 85EB 6A ROR A ; Rotate right
3 85EC 85 E8 STA $E8 ; Store result in $E8
4 85EE 6A ROR A ; Rotate again
5 85EF 85 E9 STA $E9 ; Store result in $E9
6 85F1 6A ROR A ; Rotate again
7 85F2 85 EA STA $EA ; Store result in $EA
8 85F4 6A ROR A ; Rotate again
9 85F5 29 08 AND #$08 ; Isolate bit 3

10 85F7 85 ED STA $ED ; Store intermediate value in $ED
11 85F9 A5 E8 LDA $E8 ; Load $E8
12 85FB 29 01 AND #$01 ; Isolate bit 0
13 85FD 05 ED ORA $ED ; Combine with $ED
14 85FF 85 ED STA $ED ; Store result in $ED
15 8601 A5 E9 LDA $E9 ; Load $E9
16 8603 29 92 AND #$92 ; Isolate bits 1, 4, and 7
17 8605 05 ED ORA $ED ; Combine with $ED
18 8607 85 ED STA $ED ; Store result in $ED
19 8609 A5 EA LDA $EA ; Load $EA
20 860B 29 04 AND #$04 ; Isolate bit 2
21 860D 05 ED ORA $ED ; Combine with $ED
22 860F 85 ED STA $ED ; Store result in $ED
23 8611 A5 1E LDA $1E ; Reload frame counter
24 8613 2A ROL A ; Rotate left
25 8614 85 E8 STA $E8 ; Store result in $E8
26 8616 2A ROL A ; Rotate again
27 8617 2A ROL A ; Rotate again
28 8618 2A ROL A ; Rotate again
29 8619 29 40 AND #$40 ; Isolate bit 6
30 861B 05 ED ORA $ED ; Combine with $ED
31 861D 85 ED STA $ED ; Store result in $ED

The data at 0x001E stores an 8 bit frame counter which is incremented each frame and
loops back to 0 once the value exceeds 255. Here the frame counter is loaded and then
the bits are shuffled to reduce the frame-to-frame consistency, and thus predictability of the
RNG value. Next the byte at 0x0019 which stores the current controller values (as shown
in figure 7) is loaded and shuffled:

Address Hex Disassembly Comment

1 861F A5 E8 LDA $E8 ; Load $E8
2 8621 29 20 AND #$20 ; Isolate bit 5 of $E8
3 8623 05 ED ORA $ED ; Combine with the value in $ED
4 8625 85 ED STA $ED ; Store the result back into $ED
5 ;Mix a specific bit (bit 5) of $E8 into $ED
6

17

Hal Kolb

7 8627 A5 D0 LDA $D0 ; Load $D0
8 8629 6A ROR A ; Rotate right
9 862A 85 E8 STA $E8 ; Store the result in $E8

10 862C 6A ROR A ; Rotate accumulator right again
11 862D 85 E9 STA $E9 ; Store the result in $E9
12 862F 6A ROR A ; Rotate right again
13 8630 29 98 AND #$98 ; Isolate bits 3, 4, and 7
14 8632 85 EC STA $EC ; Store the result in $EC
15 ;Shuffle and isolate specific bits from $D0 (source of randomness)
16

17 8634 A5 D0 LDA $D0 ; Reload $D0
18 8636 29 01 AND #$01 ; Isolate bit 0 of $D0
19 8638 05 EC ORA $EC ; Combine with the value in $EC
20 863A 85 EC STA $EC ; Store the result back into $EC
21 ;Add the least significant bit (LSB) of $D0 into $EC
22

23 863C A5 E8 LDA $E8 ; Load $E8
24 863E 29 02 AND #$02 ; Isolate bit 1 of $E8
25 8640 05 EC ORA $EC ; Combine with the value in $EC
26 8642 85 EC STA $EC ; Store the result back into $EC
27 8644 A5 E9 LDA $E9 ; Load $E9
28 8646 29 04 AND #$04 ; Isolate bit 2 of $E9
29 8648 05 EC ORA $EC ; Combine with the value in $EC
30 864A 85 EC STA $EC ; Store the result into $EC
31 ;Add bit 1 of $E8 and bit 2 of $E9 into $EC.
32

33 864C A5 D0 LDA $D0 ; Reload $D0
34 864E 2A ROL A ; Rotate left
35 864F 85 E8 STA $E8 ; Store the result in $E8
36 8651 2A ROL A ; Rotate left again
37 8652 29 20 AND #$20 ; Isolate bit 5 of the accumulator
38 8654 05 EC ORA $EC ; Combine with the value in $EC
39 8656 85 EC STA $EC ; Store the result back into $EC
40 ;shift 0x00D0s bits left , and bit 5 is added to 0x00EC.
41

42 8658 A5 E8 LDA $E8 ; Load $E8
43 865A 29 40 AND #$40 ; Isolate bit 6 of $E8
44 865C 05 EC ORA $EC ; Combine with the value in $EC
45 865E 18 CLC ; Clear the carry flag
46 865F 65 19 ADC $19 ; Add $19 to accumulator with carry
47 8661 85 19 STA $19 ; Store the result back into $19
48

49 8663 6A ROR A ; Rotate accumulator right
50 8664 85 E8 STA $E8 ; Store the result in $E8
51 8666 6A ROR A ; Rotate accumulator right again
52 8667 85 E9 STA $E9 ; Store the result in $E9
53 8669 6A ROR A ; Rotate accumulator right again
54 866A 29 02 AND #$02 ; Isolate bit 1 of the accumulator
55 866C 85 EC STA $EC ; Store the result in $EC
56

57 866E A5 E8 LDA $E8 ; Load $E8
58 8670 29 20 AND #$20 ; Isolate bit 5 of $E8
59 8672 05 EC ORA $EC ; Combine with the value in $EC
60 8674 85 EC STA $EC ; Store the result back into $EC
61 8676 A5 E9 LDA $E9 ; Load $E9

18

GymNESium: Deep Reinforcement Learning for the NES

62 8678 29 08 AND #$08 ; Isolate bit 3 of $E9
63 867A 05 EC ORA $EC ; Combine with the value in $EC
64 867C 85 EC STA $EC ; Store the result back into $EC
65

66 867E A5 19 LDA $19 ; Load $19
67 8680 2A ROL A ; Rotate accumulator left
68 8681 85 E8 STA $E8 ; Store the result in $E8
69 8683 2A ROL A ; Rotate accumulator left again
70 8684 85 E9 STA $E9 ; Store the result in $E9
71 8686 2A ROL A ; Rotate accumulator left again
72 8687 29 40 AND #$40 ; Isolate bit 6 of the accumulator
73 8689 05 EC ORA $EC ; Combine with the value in $EC
74 868B 85 EC STA $EC ; Store the result back into $EC
75 868D A5 E8 LDA $E8 ; Load $E8
76 868F 29 04 AND #$04 ; Isolate bit 2 of $E8
77 8691 05 EC ORA $EC ; Combine with the value in $EC
78 8693 85 EC STA $EC ; Store the result back into $EC
79 8695 A5 E9 LDA $E9 ; Load $E9
80 8697 29 10 AND #$10 ; Isolate bit 4 of $E9
81 8699 05 EC ORA $EC ; Combine with the value in $EC
82 869B 85 EC STA $EC ; Store the result back into $EC
83

84 869D A5 19 LDA $19 ; Load $19
85 869F 29 81 AND #$81 ; Isolate bits 0 and 7 of $19
86 86A1 05 EC ORA $EC ; Combine with the value in $EC
87 86A3 18 CLC ; Clear the carry flag
88 86A4 65 ED ADC $ED ; Add $ED to accumulator with carry
89 86A6 85 18 STA $18 ; Store the final RNG value in $18
90 86A8 60 RTS ; Return from subroutine

Appendix B. Hyperparameters

The hyperparamters used are identical to those outlined in Clark et al. (2024) shown in the
table below.

19

Hal Kolb

Hyperparameter Value
Learning Rate 1e− 4
Discount Rate 0.997
N-Step 3
IQN Taus 8
IQN Number Cos 64
Huber Loss κ 1.0
Gradient Clipping Max Norm 10
Parallel Environments 64
Gradient Step Every 64 Environment Steps (1 Vectorized Env Step)
Replace Target Network Frequency (C) 500 Gradient Steps (32K Environment Steps)
Batch Size 256
Total Replay Ratio 1

64
Impala Width Scale 2
Spectral Normalization All Convolutional Residual Layers
Adaptive Maxpooling Size 6x6
Linear Size (Per Dueling Layer) 512
Noisy Networks σ 0.5
Activation Function ReLu
ϵ-greedy start 1.0
ϵ-greedy decay 2M Frames
ϵ-greedy end 0.01
ϵ-greedy disabled 100M Frames
Replay Buffer Size 1048576 Transitions (220)
Minimum Replay Size for Sampling 200K Transitions
PER Alpha 0.2
Optimizer Adam
Adam Epsilon Parameter 1.95e-5 (equal to 0.05 batchsize)
Adam β1 0.9
Adam β2 0.999
Munchausen Temperature τ 0.03
Munchausen Scaling Term α 0.9
Munchausen Clipping Value (l0) -1.0
Evaluation Epsilon 0.01 until 125M frames - then 0
Evaluation Episodes 100
Evaluation Every 1M Environment Frames (250K Environment Steps)

Figure 14: Training hyperparameters.

References

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, jun 2013.

20

GymNESium: Deep Reinforcement Learning for the NES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Hen-
rique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas
Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota
2 with large scale deep reinforcement learning. CoRR, abs/1912.06680, 2019. URL
http://arxiv.org/abs/1912.06680.

Tyler Clark, Mark Towers, Christine Evers, and Jonathon Hare. Beyond the rainbow: High
performance deep reinforcement learning on a desktop pc, 2024. URL https://arxiv.
org/abs/2411.03820.

Théo Combey. cynes - c/c++ nes emulator with python bindings, 2024. URL https:
//github.com/Youlixx/cynes.

Vlad Firoiu, William F. Whitney, and Joshua B. Tenenbaum. Beating the world’s best at
super smash bros. with deep reinforcement learning. 2017. URL https://arxiv.org/
abs/1702.06230.

Vlad Firoiu, Max Shen, and Kyle Darling. Slippi-ai (phillip ii). 2020. URL https://
github.com/vladfi1/slippi-ai.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

Christian Kauten, Luke Wood, Robert Clark, Elias Hasle, and Jun Jet T. gym-super-mario-
bros: An openai gym environment for super mario bros, 2017. URL https://github.
com/Kautenja/gym-super-mario-bros.

Christian Kauten, Lucas Schönhold, fo40225, Aymeric Bianco Pelle, and Devan Mallory.
nes-py: Python3 nes emulator and openai gym interface, 2018. URL https://github.
com/Kautenja/nes-py.

Lucandor158 and Zoxsox. Hippo rng. https://docs.google.com/document/d/
1haVqEMyMtdr-zXUzGHcERdyJAXHC00O8hAodKA7n-5I/edit?tab=t.0, 2019. Accessed on
January 2, 2025.

Volodymyr Mnih. Asynchronous methods for deep reinforcement learning. arXiv preprint
arXiv:1602.01783, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533,
2015.

Tom Murphy VII. The first level of super mario bros. is easy with lexicographic orderings
and time travel . . . after that it gets a little tricky. 2013.

21

http://arxiv.org/abs/1912.06680
https://arxiv.org/abs/2411.03820
https://arxiv.org/abs/2411.03820
https://github.com/Youlixx/cynes
https://github.com/Youlixx/cynes
https://arxiv.org/abs/1702.06230
https://arxiv.org/abs/1702.06230
https://github.com/vladfi1/slippi-ai
https://github.com/vladfi1/slippi-ai
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/nes-py
https://github.com/Kautenja/nes-py
https://docs.google.com/document/d/1haVqEMyMtdr-zXUzGHcERdyJAXHC00O8hAodKA7n-5I/edit?tab=t.0
https://docs.google.com/document/d/1haVqEMyMtdr-zXUzGHcERdyJAXHC00O8hAodKA7n-5I/edit?tab=t.0

Hal Kolb

Tom Schaul. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy
Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609, 2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural In-
formation Processing Systems, 36, 2024.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius
Hobbhahn. Will we run out of data? limits of LLM scaling based on human-generated
data. arXiv preprint arXiv:2211.04325, 2022. Accessed on.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference
on machine learning, pages 1995–2003. PMLR, 2016.

22

	Introduction
	NES vs Atari
	Mike Tyson's Punch Out!!
	Creating the Environment
	Mathematical Formulation
	Game State
	Decision

	Exogenous Information
	Policy
	Reward Function
	Objective Function

	Code
	GymNESium
	Boxing Gym

	Transition Function
	Network Architecture

	Training
	Evaluation
	Conclusion
	RNG Disassembly
	Hyperparameters

